Truelime

Model 560-5145
Quad Fiber Optic Transmitter Manual

SECTION ONE

1 FUNCTIONAL DESCRIPTION
1.1 PURPOSE OF EQUIPMENT
1.2 PHYSICAL SPECIFICATIONS
1.3 ENVIRONMENTAL SPECIFICATIONS
1.4 POWER REQUIREMENTS
1.5 FUNCTIONAL SPECIFICATIONS
1.5.1 REF A, B, C INPUTS
1.5.2 FIBER OPTIC OUTPUT
1.5.3 CARD COMPATIBILITY

SECTION TWO

2 INSTALLATION AND OPERATION
2.1. HOT-SWAPPING
2.2. REMOVAL AND INSTALLATION
2.3. SETUP
2.3.1 INPUT FREQUENCY SELECT (SW1 thru SW5)
2.4. FAULT INDICATIONS
2.4.1 INIT. FAULT INDICATOR
2.4.2 DETAILED FAULT STATUS VIA CPU

SECTION THREE

3 THEORY OF OPERATION
3.1 GENERAL INFORMATION
3.2 CIRCUIT BOARD DESCRIPTION
3.3 DETAILED DESCRIPTION
3.3.1 PASSIVE COMBINER
3.3.2 OUTPUTS
3.3.3 POWER SUPPLY

SECTION FOUR

4 DETAILED DRAWINGS
4.1. 560-5145 DETAILED DRAWINGS / BILL OF MATERIALS
\qquad

SECTION ONE

1 FUNCTIONAL DESCRIPTION

1.1 PURPOSE OF EQUIPMENT

The Model 560-5145 Fiber Optic Transceiver card is a rear chassis mounted plug-in option card for the Model 56000. This Assembly provides four Fiber Optic output channels which are driven by the passively combined result of the three signal buses REF A, B, and C, all of which have the same frequency signal on them.
1.2 PHYSICAL SPECIFICATIONS
Dimensions: $\quad 0.8 " w \times 4.4 " \mathrm{~h} \times 5.0 " \mathrm{~d}(2 \mathrm{~cm} \times 11 \mathrm{~cm} \times 13 \mathrm{~cm})$

Weight: Approximately $1 / 2$ pound $(1 / 4 \mathrm{~kg})$
1.3 ENVIRONMENTAL SPECIFICATIONS

Operating Temp: $\quad 0^{\circ}$ to $+50^{\circ} \mathrm{C}$
Storage Temp: $\quad-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
Humidity:
Up to 95% relative, non-condensing
Cooling Mode: Convection
Altitude: \quad Sea level to $10,000 \mathrm{ft}$.
1.4 POWER REQUIREMENTS

Voltage: 18-72 VDC
Power:
3.5 W

1.5 FUNCTIONAL SPECIFICATIONS

1.5.1 REF A, B AND C INPUTS

Signal Type: Squarewave or Sinewave
Amplitude: 2-5 Vpp
Frequency: $\quad 1,5$ or 10 MHz (switch-selectable)

1.5.2 FIBER OPTIC OUTPUT

Wavelength: $\quad 820 \mathrm{nM}$
Level: $\quad-14$ to -21 dBm into $50 / 125$ micron fiber
Level: $\quad-10$ to -18 dBm into $62.5 / 125$ micron fiber
Connector: ST

1.5.3 CARD COMPATIBILITY

Location: Slots 1-17 (rear)
Compatibility: See Card Compatibility Matrix

SECTION TWO

2 INSTALLATION AND OPERATION

2.1 HOT-SWAPPING

All cards, input cables and output cables are hot swappable. It is not necessary to remove chassis power during insertion or removal. Hot swapping and reference-source changes are abrupt, the effects difficult to characterize; however, the system is designed to protect against permanent effects and minimize temporary effects of these events.

Typically, adjacent-card hot swapping has a negligible effect on the Fiber Optic Transmitter. The hot swapping event typically lasts less than one clock-period and has an average of 0 Volts. The effect of redundant power supply switch-over is also negligible.

Hot swapping of a Fiber Optic Transceiver affects the system in varying ways depending upon whether it is configured to drive REF A, B, or C and depending upon which reference input is the currently-highest priority. These effects are discussed in individual card manuals.

The 560-5145 card can operate without a Fault Monitor CPU card installed in the system. In this mode, the 560-5145 card offers automatic REF A, B, and C passive combiner operation as previously stated. When the 560-5145 card is used in a system that includes the Fault Monitor CPU card, the REF A, B, and C inputs are also controlled by the CPU. When a REF A source's Fault Status is detected (monitored by the CPU), the REF A input on the 560-5155-1 card is disabled. The REF B and REF C inputs are operated similarly -- they are turned off whenever a Fault Status condition for that reference exists. The CPU's REF A, B, and C control feature ensures that only a viable reference oscillator is used on the 560-5145 card.

2.2 REMOVAL AND INSTALLATION

CAUTION: Individual components on this card are sensitive to static discharge. Use proper static discharge procedures during removal and installation.

Refer to CARD COMPATIBILITY section prior to installing new card.

To remove card, loosen the captive retaining hardware at the top and bottom of the assembly, then firmly pull on the handle (or on any connector on rear panel adapter cards) at the bottom of the card. Slide the card free of the frame. Refer to the SETUP section for any required switch settings; or, set them identically to the card being replaced. Reinstall the card in the frame by fitting it into the card guides at the top and bottom of the frame and sliding it in slowly, avoiding contact between bottom side of card and adjacent card front panel, until it mates with the connector. Seat card firmly to avoid contact bounce. Secure the retaining screws at the top and bottom of the card assembly.

2.3 SETUP

The setup of the 560-5145 Fiber Optic Transmitter involves selection of the Passive Combiner DIP switches SW1 thru SW5. These switches are set to match the system-wide reference frequency on REF A, B, and C : 1,5 , or 10 MHz .

2.3.1 INPUT FREQUENCY SELECT (SW1 thru SW5)

Set SW1 through SW5 to select the appropriate frequency:

REF A, B, C FREQUENCY	$\mathbf{1 0} \mathbf{~ M H z}$	$\mathbf{5} \mathbf{~ M H z}$	$\mathbf{1} \mathbf{~ M H z}$
SW1-1 thru SW5-1	ON	OFF	OFF
SW1-2 thru SW5-2	OFF	ON	OFF
SW1-3 thru SW5-3	OFF	OFF	ON
SW1-4 thru SW5-4	OFF	OFF	OFF

2.4 FAULT INDICATIONS

The card has no externally visible fault indication LEDs.

2.4.1 INIT. FAULT INDICATOR

This is an on-card fault indicator which is not externally visible; although it can be seen by installing the card next to an empty slot. It indicates a failure of the card to initialize properly during power-up. Occasionally, this fault is caused by a temporary condition related to the cycling of power and can be cleared by a power or hot swap cycle. If this is unsuccessful, the card is defective.

2.4.2 DETAILED FAULT STATUS VIA CPU

The Fault Monitor CPU has access to detailed 1, 5, 10 MHz Frequency Synthesizer card status. This status is available via the Fault Monitor CPU serial port. Individual bit definitions are as follows:

FAULT STATUS 0	BIT	STATUS (1=ACTIVE)
Low	0	Output Fault A*
Nibble	1	Output Fault B
Low	2	Output Fault C
Byte	3	Output Fault D*
High	4	Not Defined
Nibble	5	Not Defined
High	6	Not Defined
Byte	7	Not Defined
FAULT STATUS 1	BIT	STATUS (1=ACTIVE)
Low	0	Power Cycled
Nibble	1	Not Defined
High	2	Not Defined
Byte	3	Not Defined
High	4	Not Defined
Nibble	5	Not Defined
High	6	Not Defined
Byte	7	Not Defined

STATUS REG 0	BIT	
STATUS (1=ACTIVE)		
Low	0	Not Defined
Nibble	1	Not Defined
Low	2	Not Defined
Byte	3	Not Defined
High	4	Not Defined
Nibble	5	Not Defined
High	6	Not Defined
Byte	7	Not Defined
STATUS REG 1	BIT	
Low	0	Not Defined
Nibble	1	Not Defined
High	2	Not Defined
Byte	3	Not Defined
High	4	Not Defined
Nibble	5	Not Defined
High	6	Not Defined
Byte	7	Not Defined

* Latched Fault Bit -- Reset Via Fault Monitor CPU.

CARD ID: 0x3050

SECTION THREE

3 THEORY OF OPERATION

3.1 GENERAL INFORMATION

This section contains a detailed description of the circuits in the Fiber Optic Transmitter card. These descriptions should be used in conjunction with the drawings in SECTION FOUR.
3.2 CIRCUIT BOARD DESCRIPTION

The 560-5145 Assembly provides four Fiber Optic output channels which are driven by the passively combined result of the three signal buses REF A, B, and C , all of which have the same frequency signal on them.
3.3 DETAILED DESCRIPTION (Reference Drawing 560-5145)

3.3.1 PASSIVE COMBINER

The passive combiner is a circuit that strives to always output the desired signal, derived from the three separate inputs REF A, B, and C (named FREQA, B, and C on the schematic), without introducing any switching transient or glitch when one or two of the inputs are lost. It is composed of three input filter sections, three high speed comparators, a weighting network and a passive combining network. The filters and the combining network employ tuned circuits and therefore have to have their values adjusted depending on the required input frequency of either 1,5 , or 10 MHz . This is accomplished by the use of SW1 through SW5, which are 4PST DIP switches.

The input filters and the comparators serve to produce a very clean squarewave with very good symmetry. These squarewaves are then buffered and applied to a weighting network where they are summed with different weights in order to give the primary source the greatest influence on the final result. This summing results from an interaction between the weighting network and the combining network which is composed of a parallel resonant tank and a series resonant tank. These tanks are tuned slightly off center to lower the Q so that amplitude variations are minimized when input signals are changed. The final output voltage is then buffered and squared to produce the final signal called FREQIN.

3.3.2 OUTPUTS

FREQIN is applied through isolation resistors to the inputs of four analog buffers. The outputs of the analog buffers are applied to the fiber optic transmitters via current limiting networks. These networks limit standby current but allow for a much greater operating current when signals are applied to the transmitters.

3.3.3 POWER SUPPLY

The DC-to-DC Converter converts 48 VDC backplane power to local ± 5 VDC power. It is fully-isolated from the backplane power and referenced to signal GND on the Synthesizer card. Backplane power is supplied via a Polyswitch fuse device, diode and Pi-section L-C filter. The poly-fuse protects the backplane power bus from internal DC-to-DC shorts. The diode and L-C filter serve a triple purpose. During liveinsertion, the high-current inductor minimizes in-rush current to the DC-to-DC being inserted; and, the diode and capacitor serve to hold up the local voltage at the input to each currently-installed DC-to-DC. During steady-state conditions, the L-C filter minimizes switching noise coupled back into the backplane power bus. During live-extraction, the 0.1 uF capacitor absorbs the inductive-kick of the opened circuit, minimizing contact-arcing.

The -5 VDC side of the supply is artificially loaded, providing a minimum load to improve output voltage regulation. The power-up reset generator, assures that RESET is active while the +5 VDC supply is between 1 and 4.5 VDC. This guarantees proper configuration of the Xilinx FPGA during hot swapping and power-up.

The analog buffer have additional power supply filtering with the use of RF chokes. These chokes isolate the four transmitting sections from themselves and other sections of the card.

SECTION FOUR

DETAILED DRAWINGS
4.1 560-5145 DETAILED DRAWINGS / BILL OF MATERIALS

6000-APPROYAL
$000-P_{1}$
0000-PRTHT
0000-REY
$008-40.06$
$0088-100$
008 -1002
6008-101
0085-102

Pats list approugl		0000
PRRIS LIST REY LEvel		0000
Efferuce prinl		0000
PCEfEY HUEL HERE DD		0000
RES 40, 2 OHM 1206	H16 M9C25m0R27R	0000
RES 10 Om\% 5\% 0605	H16 Mmer2Aloova	0000
RES 10 OLOM]/86 180805		0000
RES 100 OHM Mek OECS 5\%	Wio mach2riolt	0000
QES IM OHM J/8\% 1\% 0805	Wha matherioatth	0000

A1-3, 12, 15, 27,31,52,57,61
$0085-1022$
0085-104
$0085-105$
$0085-1823$
$0085-202$
$0098-222$
$0085-241$
0085-3741
008 - 471
$0085-472$
0008-473
$023-010-100$
$036-095$
0365-4P0101
0365-N00102
$0365-400151$
$0365-190200$
$0365-400222$
$0365-4 p 0331$
0365-190680

0368-190682
$0365-1190751$
$0365+77103$
$0365-150104$

	H16 NRC12R10227t (0805)	0000
FES 100 OHM 1/84 140805	H1C NRCL2R1045Th	0000
RES 1 H6C I/8k 0005 5\%	H10 sRC1241034	0000
RES 182 OHm I 50805		0000
RES 2\% OH: 1/8w 0005	H10 wncentrouth	0000
RES 2.2. 0 Hm 1/840805 5\%		0000
RES 240 OHm 1/840805	NIC NRC12m2417	0000
RES 3.74 K 1/84 1\% 0805		0000
RES 470 OHM $1 / 80080554$	WhC WRC120471\%	0000
RES 4.73 OHM I/840805 5\%	WIC NRCO24472TA	0000
RES 47K OHM 1/84 0805	NTO NROL2R4737	0000
CAP AE LOUF LOOV A	PAnASOMIC ECE-A2AU100	0000
CAP YOWO 0. 1 UP 100Y R 208	Murata mprl2at5ulotmboy	0000
CAP 1000 F NOO 10040805	NIC Em0805M010131007P	0000
CAP, O0LUF NP0 l00\% 0805	H1C Amogeosweolotz1007R	0000
CAP 1508 H NPO 10040805		0000
C0P 209 4 H0 100408055	NIC HM00803Wpoz00110078	0000
CAP 2200PF MPO 08051004	HIC mmC0805N0222310078	0000
CAP 330PF NPO 100 O 005	Hic Amoosompoz31J1007R	0000
CAP 689 P NPO 10040805	WIC MTC0805NP0680.1001R	0000
CAY 680PF NPO 1000 0005		0000
CAP, CHIP, 68000P 1210	WIC NHC1210nP06B21007R	0000
CRP 750PF N00 $100 \% 0805$	H1C HMC0005N007511007R	0000
CAP OLUF X78 5080805	H1C HMC0005 70.0345078	0000
CAP CER WU Y5 5040805		0000
07-10,21,22,26,28, 29, 35, 3 ,	36,40,41,46,48-56,59,61,32,	,69,7

1.0000	H	$\text { pe\|Gz } 5158$
1.0000	10	RE) 1 (05-05-90)
1.0000	嗗	500.5145 AEV F
1.0000	EA	$560-2145 \mathrm{PEV}$ E
4.0000	EA	118,34,55,65
5,0000	Pa	R16, $32,53,63$
4.0000	EA	66, 0,20,62
1.0000	6	R2E
10.0000	EA	

3.0000	TA	R7, 9,21
1.0000	F	R24
5.0000	5	R23,25,29,30,58
3.0000	Pa	R4,5,19
2.0000	6\%	R 11.14
11.0000	5	R35-45
4,0000	18	A17,33,54,64
1.0000	th	R26
1.0000	(A)	810
9.0000	E	813,29,46-49,51,59,60
1.0000	Ef	R50
1.0000	$\underline{4}$	631
1.0000	EA	030
4.0000	5	C38,39,42,44
2,0000	EA	017.19
3.0000	EA	03,43:3
2.0000	Th	667,68
2.0000	EA	604,65
2.0000	L ${ }_{\text {a }}$	0.5,20
3.0000	LA	05,6,34
2.0000	PA	016.18
2.0000	EA	014,37
3.0000	Ha	01,2,32
7.0000	E4	(1)-13,23,43,57,70
31.0000	[a	

0375-225	CAP 2,2UT 16V 3528	NIC NTC-122516TR	0000	8.0000	EA	024,25,27,45, 47, 58,60,73
0375-686	Cap 680\% 6. 387343	WIC WTC-7686637po	0000	2.0000	EA	C63, 66
045-33	IW0uctor 3304 5.54	DAEE IHM-2 3 SUH +/-10	0000	1.0000	EA	17
0659-330,	1W0UCTOR, 33040805		0000	2.0000	Ef	110,11
0655-604H	INULTOR, 680\%, 0805	T0x Hiporos-hogk	0000	2.0000	EA	412,13
0458-2701.	IMOUCTOE, hlourrent zour	T0. NLCL812-2701-7	0000	8.0000	EA	L16,13,19-26
0455-3.3	Inouctor 3.3040805	m0x $4150805-3835 \mathrm{~T}$	0000	5.0000	H	$15,6,8,9,18$

PARE TOENTIFIER	a Desomiptron	OEScriplon 2	$\begin{aligned} & \text { EPF } \\ & \text { Dett } \end{aligned}$	EOM	QTY/AESY	U0H	UL Premence deschiplion
0458-33	1nouctor 33040805	TOK Wh F080 - 330 M	0000				
0459-6.80H	inouctor 6.8040805	T0k mifobot-brem	woun		3.0000	EA	[3,4,1)
048-14147	FIEER OPT XMTR ST STMLE	HP HFPR-1414"			.0000	EM	4, 1,10
048-4811	FleER Opy NuT	HP MP8P-641!			\$.0000	A	05,
0575-4002	010084002	ROHM PLR4002	0000		.0000	ch	07
0575-4148	D100E 1A4488	ROHM RLS41407R	0000		1.0000	A	Cal
0585-001	LEO RED X SM WRES STM	HP HLMP6600-012	0000		4.0000	,	01-3, 5
0595-20000	XTAL 20.000 ml	MPC St-6511826-20.0004H2	000		1.0000	LA	04
0655-004	SHITCH OIP HALF PITCH	AUGAT Go404S (Gulummg	0000		1.0000	$E A$	X1
1745-x05204.	XILINX XC5204y PPGA	VILINX XC5204-6V1000	0000		5.0000	EA	54.5
1755-2N2907A	TRANSISTOR 2 N2907A S01-23	MOTOROLA MMST2907AL	000		1.0000	EA	012
1765-1.1339	quad comparator luzza	HATL LIB39M	000		1.0000	EA	01
1765-LM6321H	HIGH SPEED BUFER	NATL L M632M (S01C)	000		1.0000	EA	19
1765-L11016	111016 (880)	LHEAR TELH LYOT6038	0000		4,0000	Ef	$164,10,13,17$
1765-4034064	Unoer valtage sensing cki	motorola mC3 $40640-5$	0000		3.0000	EA	U1,2,6
178.170128		ATme AT17C128-100	0000		1.0000	EA	11.6
1785-744004		AME All7C128-100C RCA COTH	0000		1.0000	EA	18
178s-7440004	740cues (1450)	RCA CO7 $\mathrm{H}_{\text {cout }}$	0000		1.0000	EA	U3
1789-1075004		RCA CO74HC104\%	0000		1.0000	EA	U7
184-053	SIMgle inverter he7suot	HATL NC75U04 (S0123-5)	0000		1.0000	EA	115
188-02.	XILINX	FOR 560-5145 Qual fler	0000		1.0000	EA	F0\% 48
$223-138$		SCHROFF $121100-188$	0000		2.0000	EA	03
223-144	WU1 H 2.5	SChrof 12100-144	0000		2.0000	E品	0.4
223-379	SCAEN CAP \$p 12.5×11	SCHROFF \$2100-379	0000		2.0000	EA	05
223-464	SLEEVE, STAINESS	SCHROFP 21100-660	0000		2.0000	CA	06
273-009	TEMINAL TEST POTM	COMP CORP P-201-25	0000		2.0000	EA	T11,8
$273-015$ $755-840-5$	TERY TEST POINT (WHITE)	COHP. CORP PP-104-01-09	0000		6.0000	[A	TP2-7
$355-8 W R-5$ $363-0.911$	DC-DC 18-7201 $+5 /-5$ OUT	DATEL BMR-5/700-048	0000		1.0000	En	951
$363-0.91 \%$ $372-968$	pouysilich 0.9A (60 yoLT)	RAYCHEW RXE090	0000		1.0000	EA	F1
$372-968 \mathrm{~A}$ $379-008$	CONW, $96-\mathrm{PH}$ OTN RT mNCLE	8ERG 68753-296	0000		1.0000	EA	91
$379 \cdot 008$ $560-1212-1$	SOCKET IC B PIH MACHIHE	WUGEN ICA-083-9TG	0000		1.0000	EA	900 U8
$560-1212-1$ $560-2145$	PNL, REAR FIER GPT TXMITH	FAB/SCREEA	0000		1.0000	EA	02
560-2145	pcb quad fiber ix	FAb	0000		1.0000	CA	01
1 la	LABOR ASSEMBLY COST HPS		0000		D	ca	
LT ${ }^{\text {ners }}$	LAB0R TEST COST ROURS		0000		0	FA	
NOTE 1 Oev560-5145			0000		1.0000	18	R56 HOT Instalict
034560-51.5	OUTSIOE LABOR 560-5145	PCA	0000		1.0000	EA	Nos hor inutime

